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Abstract 
 

This paper describes two new capabilities that have been implemented in the non-linear 
dynamics program AUTODYN-3D. 

• A second order Euler processor using a Godunov solver, three dimensional 
interface reconstruction, and dynamic memory management. 

• A Lagrange to Euler remap. 
The numerical simulation of the formation and penetration of an explosively formed 

projectile is used to demonstrate these new capabilities. 
 

 
1.0 Introduction 

 
Impacts and penetrations typically produce large material flow and deformation. In a Lagrangian calculation the grid 
moves with the material velocity. This can cause severe grid distortions of the Lagrangian grid. In many cases 
Eulerian coordinates are a natural way to handle such problems. In the past, however, several drawbacks have 
prevented the efficient utilization of the multi-material Eulerian technique: 
 
• The advection of material through an Euler grid can generate numerical diffusion, which artificially smoothes 

gradients in the calculation. 
• It is difficult to adequately follow material interfaces, which cut through the Euler cells, especially if the material 

flow is in a direction diagonal to the grid. 
• Most importantly, an Euler grid must cover regions not only where material initially exists, but also regions into 

which material is expected to flow during a calculation. For three-dimensional calculations the resulting memory 
requirements are usually so prohibitive, that only coarse-grid calculations can be computed. 

. 
A new second order Euler processor has been implemented in the non-linear dynamic analysis program AUTODYN-
3D. This processor employs novel techniques to remedy the above deficiencies: 

 
• A second order Godunov scheme [1]  is used to decrease numerical diffusion. 
• Multi-material interfaces are followed using a fast and robust algorithm similar to Young’s technique [2]. 
• A unique dynamic memory-management scheme allows almost no memory to be used for empty (void) cells . 

Thus, an Eulerian calculation utilizes only slightly more memory resources than an equivalent Lagrangian 
calculation. 

 
Despite problems with grid distortions, the Lagrangian approach still has several advantages over Euler, particularly 
in modeling complex or thin material  layers and material strength and failure. Therefore, it is often preferable to 
perform the early stages of the calculation using a Lagrangian grid, while grid distortions are reasonable. An option 
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has been developed for AUTODYN-3D, which allows such calculations to be remapped into a multi-material Euler 
grid  (conserving mass, momentum and energy) when distortions become too severe. 

 
An  example illustrates these capabilities. The formation of an Explosively Formed Projectile (EFP) is computed 
using Lagrangian coordinates. The results of this calculation are then remapped into an Eulerian grid, and the impact 

of the EFP into a target is computed. 
 

2.0 Theory 
 

To obtain the differential equations of motion, the conservation laws of mass momentum and energy are applied to an 
arbitrary small closed control volume, V:  

 
The control volume may be moving with an arbitrary speed, ug . In Eulerian coordinates, the grid is fixed, ug=0. In 
Lagrangian coordinates, the grid moves with the material velocity, ug= u .  The total energy eT is expressed as the sum 

 and stress The stress tensor is decomposed into a hydrostatic pressure p,. of internal energy e and kinetic energy 
The pressure is obtained from the equation of state, while the stress deviators are derived from material .  sdeviators 

constitutive relations: 

 
For compressible flow, the resulting equations of motions are hyperbolic in character. During the solution of these 
equations, shocks and contact discontinuities can be generated, across which the differential equations do not hold. In 

such situations, applying the conservation equations across the discontinuity yields the Rankine-Hugoniot relations. 
 

The difference equations are obtained by applying the integral conservation equations directly over the computational 
cell. In this way, the resulting equations are locally conservative. However, like the differential equations, these 
difference equations are not valid at discontinuities. One solution to this problem is to explicitly follow each shock 
present in a calculation and solve the Rankine-Hugoniot relations across the shock front. This technique is called 
“shock fitting”. Unfortunately, the complex formations and interactions of shocks that typically develop in multi-
dimensional solutions make this technique far too complicated and impractical to implement for general-purpose 
calculations. An alternative, more practical approach, is to modify the difference equations to capture the shocks. The 
most popular of these “shock capture” techniques is Von Neumann’s “Pseudoviscosity” [3]. With this technique, a term 
is added to the differential equations, which causes gradients at shocks to be spread over 2-3 computational cells . This 
method is usually used in first order solutions as results tend to be somewhat noisy near discontinuities, reducing the 
accuracy of calculations. In the second order Godunov scheme, an algorithm that correctly captures shocks without 

using artificial damping terms is used. 
 

2.1 The second order Godunov scheme   
 

In a first order difference scheme, variables are assumed to be constant within a computational cell. With this 
assumption, there will commonly be a discontinuity at the boundary between two neighboring cells . In gas-dynamics, 
the solution at a discontinuity between two constant states is known as the Riemann problem. Godunov [4] proposed 
that the Riemann problem be solved to obtain face values of variables. The resulting face values are then used to 
integrate the conservation equations over the control volume. In first order solutions, this technique diffuses  gradients 
more than the Von-Neumann pseudo-viscosity  method. To overcome this problem, Van Leer [1] extended Godunov’s 
method to second order. This technique has been implemented in AUTODYN-3D. To obtain second order accuracy, 
each variable is assumed to vary linearly over a cell. This requires carrying not only a cell-centered value for each 
variable, but also its gradient. The gradient is used to extrapolate face values of variables from the cell-centered 
values. In general, the extrapolated face values are different on each side of a face, so an approximate Riemann 

problem is solved to advance the solution at each face to the middle of the time step.  
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To maintain stability, the advection terms must be diffusive up to the truncation error. Consequently a second order 
transport scheme is much less diffusive than the equivalent first order solution. However, in the neighborhood of 
shocks, where the gradients are infinite, a higher order scheme may perform worse. Such schemes can also artificially 
create new extrema, or enhance existing extrema in the distribution of the variables. To prevent such non-monotonic 
behavior, Van Leer proposed a slope limiting technique, whereby the density gradient (slope) in a cell is limited, so 
that the extrapolated values of the density at the neighboring cell centers remain bounded by the values of the 

densities in the neighboring cells .  
 

The second order Godunov scheme implemented in AUTODYN-3D closely follows the work of Hancock [5]. Thus, 
gradients are set to zero at shocks and discontinuities, and near free surfaces and material interfaces (i.e. in these 
areas, the solution reverts to first order). The conservation equations are integrated over the computational cells in 
three-dimensional space (rather than carrying out one-dimensional direction splitting which, while technically simpler 
and formally second order accurate, is trouble prone). Hancock’s prescriptions for slope-limiting are used. For elastic-
plastic flow, the slopes of the stress deviators are not computed, so their advection is only first order accurate (for 
typical problems involving high-speed impact and detonation, where the stress deviators account for less than 10% of 

the pressure, this approach can be justified).  
 

The Riemann solver uses a two-shock approximation. Since the shock Hugoniot for weak waves is tangent to the 
isentrope, this approximation holds reasonably well everywhere, except near strong rarefactions. In compression, and 

locally, over the time step, a linear relationship is assumed between the shock speed, Us, and the material velocity, u: 
 

 
For most solids, such a relation is experimentally observed over a large range of pressures. For expansions, Us is taken 
to be equal to the sound speed c0. This approach does not limit the equation of state used. The role of the Riemann 

solver is somewhat similar to the artificial viscosity used in first order codes. 

 
2.2 Multi-material interface tracking 

 
In an Eulerian calculation the grid remains fixed in space, and materials flow through it. This means that material 
interfaces may cut through cells . One of the most difficult tasks in a multi-material Eulerian scheme is to adequately 
follow these material interfaces. A number of different approaches have been used to address this problem. Some 
solutions (e.g. Particle In Cell (PIC) [6]) use Lagrangian particles to track material interfaces. These particles move 
with the material and consequently suffer from distortion problems similar to those characteristic of Lagrangian grids. 
A recent alternative is the Level Set [7] method in which the interface is located at some constant value of a function 
defined at the cell vertices. Typically the function may be chosen as the distance to the interface. By advancing the 
values of this function in time, the interface position can be determined. Unlike Lagrange particle methods, the Level 
Set method can deal easily with changes in the topology of the interfaces. However, the location of interfaces obtained 
using either of these two approaches may not be consistent with the partial volume and mass present in a cell, as 
computed by the advection terms of the conservation equations. Because of these limitations, the following Volume of 

Fluid method (VOF) [15] has been implemented in AUTODYN. 
 

Material interface locations are needed to compute the fraction of each material that is transported across a cell face 
during the advective phase. VOF methods determine the location of any material interfaces within a donor cell by 

analyzing the volume fractions of materials in neighboring cells, essentially performing an interface reconstruction. 
 

Simple preferential transport  [8] and donor-acceptor schemes use only the two cells adjacent to the face (i.e. a one-
dimensional reconstruction) to determine the location of material interfaces. SLIC (Simple Line Interface 
Calculation)[9] is a further improvement of this approach in which the order of fluxing materials is chosen to be 
dependent on their presence in three cells (the donor cell, the acceptor cell and the cell behind the donor cell). Robust 
and efficient, SLIC gives good results if the flow is normal to the grid (material interfaces are always constructed 

normal to the grid), but can cause large errors when the flow is diagonal through the grid. 
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                                                  SLIC                                                         Multidimensional Reconstruction 
This problem is largely overcome by using a more complex multidimensional interface reconstruction [2,10-12] , where 
the shape of the interface cutting the cell is assumed to be planar, but not necessarily normal to the grid. If  the normal 
direction to this plane is known, the position of the material interface can be exactly determined from the volume Vα  , 
of one of the materials in the cell [12]. The normal is assumed to be in the direction of the gradient of the relative partial 

volume, ∇ (Vα  /V). The gradient is computed using the values of  (Vα  /V)  in the donor cell and all its neighbors [2].   
 

This high-resolution algorithm is ideal for a well-behaved interface where at least one neighbor to the donor cell is full 
of material and one is empty. If this is not the case (e.g. if there is a single drop of material in a cell), the normal to the 
interface is not well defined, in which case SLIC is used.  SLIC is also reverted to if there are more than two materials 

(including voids) in a donor cell. 
  

2.3 Dynamic memory management 
 

A Lagrangian grid deforms with the materials it is modeling, whereas an Eulerian grid is fixed in space and the 
materials flow through it . Consequently an Euler grid must span all the space reached by any of its materials during 
the calculation. For problems in which materials move many times their characteristic lengths, the number of  
Eulerian cells required will far exceed the number of Lagrangian cells necessary to describe the same problem. For 
three-dimensional problems this ratio may well be more than an order of magnitude. To account for the advection 
variables, an Eulerian cell also requires about twice the storage of a Lagrangian cell. Consequently, memory 
requirements for running many Eulerian calculations with adequate grid resolution exceed the available resources. To 
overcome these difficulties AUTODYN-3D takes advantage of modern compiler technology in using a  novel 
dynamic memory-management scheme.  AUTODYN-3D , Version 4,  has been completely rewritten in Fortran 90, 
allowing a simpler and more transparent use of pointers. Each cell in an Euler grid has a pointer, pointing to a location 
in memory where grid and material variables for the cell are stored (grid coordinates are not included in these data, 
they are stored in separate arrays ). Understanding that empty (void) cells require no grid or material data, the pointers 
for all empty cells point to a common location in memory containing dummy data for void cells . Each time a cell is 
emptied, the block of memory pointed to for that cell is released and the pointer is redirected to the common memory 
location for void cells .  When a previously empty cell has material flow into it, a new block of memory is assigned for 
its grid and material variables and the pointer for the cell (previously pointing to the common memory location) is 
redirected to the newly assigned memory. A similar technique is used for multi-material cells . As materials flow in 
and out of cells, the amount of memory pointed to is adjusted according to the number of materials in each cell. For 
efficiency, system memory is allocated as required in large “superblocks”. Released blocks are not returned to the 
system but reused, using stack logic.  Also, a list is kept of the non-empty cells, so that most computations are not 

carried out for empty cells . 
 

2.4 Lagrange to Euler Remap 
 

The advanced multi-material Eulerian techniques described above improve the efficiency and the quality of Eulerian 
calculations. However, if grid distortions are small, a Lagrangian calculation still has some definite advantages over 
Euler. In Euler, the advection phase poses a number of problems. 
 

• The advection terms have to be computed, and this consumes both memory and CPU resources.  
• Even using a second order scheme, the advective phase of an Euler calculation adds more diffusion to solutions 

compared to Lagrange. 
• Certain material properties cannot be advected with a high degree of accuracy in Euler.  
• It is more efficient to follow a Lagrangian, body-fitted boundary, than a general multi-material interface, which 

cuts through Eulerian cells . 
• It is difficult to track thin layers of material moving through an Euler grid with good accuracy 
 

For these reasons, it is preferable to use a Lagrangian approach whenever practical. The Lagrange to Euler remap 
algorithm in AUTODYN-3D allows this to be done easily. Often one wants to use a Lagrangian solution in the early 
stages of a calculation before grid distortions begin to cause serious problems, then switch to an Eulerian solution for 

the later stages.  
 

The remap algorithm actually serves a dual purpose, as it can also be used to set up and initialize multi-material Euler 
regions at the start of a calculation. Generating a Cartesian Euler grid is fairly straightforward, but filling the grid with 
various shaped structures can be very difficult . Simple standard fills, such as blocks, cylinders or spheres, can readily 
be generated, but custom fitted shapes are usually much more difficult. If such shapes are generated and filled using 

body-fitting Lagrange grids (a much simpler task), these grids can then be immediately remapped into an Euler grid. 



 

 
The remap algorithm is based on applying the conservation laws of mass, momentum and energy. As this remap is 
applied only once in a calculation, a first order scheme is used that is an extension of the 2D algorithm used by 

Hancock [5,13] (the generalization to second order is straightforward  [14]). 
 

First AUTODYN computes the common volume δVij, between each Lagrangian cell i, and every Eulerian cell j. The 
Lagrangian cells in AUTODYN are hexahedrons, but the scheme works for any polyhedron. The density ρ j in the 

Eulerian cell j is computed as: 
 

 
Similar relations apply for momentum and energy totals. Remapping of variables is diffusive (this is required for 
stability), so conservation of momentum will decrease kinetic energy, Consequently, preserving total energy results in 
increasing internal energy. To prevent unphysical heating in regions where the kinetic energy is large, the internal 
energy is preserved separately. A volume-weighted average is used for variables that do not have a simple 
conservation law  (e.g. the stress deviators). 

 
3.0  Example: An Explosively Formed Projectile (EFP) 

 
To demonstrate the new capabilities described in this paper, the formation of an explosively formed penetrator (EFP) 

and its oblique impact on a target plate has been computed using combined Lagrange and Euler simulations. 
 

3.1  EFP Formation 
 

The formation of an EFP is characterized by a relatively smooth deformation process that can be easily handled in 
Lagrange coordinates, so a Lagrangian calculation is performed for this phase. Figure 1 shows the initial charge 

configuration. 
 

 
 

Figure 1: The initial charge configuration 
 

The explosive loading of a thin copper liner forms the EFP. As the liner is loaded, its initial shape causes it to 
converge inwards towards its axis, forming a compact, high-speed projectile that can impact targets at large stand-off 
distances. To perform such a calculation in Euler would be much less efficient, because it would be necessary to 
resolve the thin liner as it moved through the Euler grid. AUTODYN’s Lagrangian processor can easily handle the 
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explosive-liner interaction and liner deformation that occurs. The steel casing surrounding the explosive is not axially 
symmetric, so a three-dimensional analysis is required. However, there is a symmetry plane at y=0, so only half the 
geometry is modeled.  

 
Figure 2 shows the shape of the liner after formation, when it has reached the stand-off of the target plate. 

 

 
 

Figure 2: The liner (EFP) after formation 
 

By this time, the loading of the liner by the detonation products is complete, so the explosive and casing are removed 
from the calculation, leaving only the EFP grid. 

  
 3.2  EFP Penetration 

 
The next step is to compute the impact and the penetration of the EFP into a target where both projectile and target are 
expected to undergo large deformations. This type of problem is most commonly solved in Eulerian coordinates. To 
achieve this, a Cartesian Euler grid is generated to cover the region occupied by the projectile and the target, and 
regions into which they may be expected to move during the calculation. The EFP is then remapped from the 
Lagrange grid into the Euler grid. Figure 3 shows the Lagrange EFP grid superimposed in the Euler grid before the 
remap. Figure 4 shows the EFP remapped into the Euler grid. 

 

        
 

       Figure 3: Lagrange EFP and Euler grid before remap                Figure 4: EFP remapped into the Euler grid 
 



 

A target plate is generated in a similar way. The plate, which is at 45 degrees to the projectile, is first generated as a 
Lagrangian grid and then its contents remapped into the Cartesian Euler grid. Figure 5 shows the Euler grid with both 

the projectile and target plate remapped into it. Figure 6 shows the material surface contours in the Euler grid. 
 

        
 

        Figure 5: Projectile and target remapped into Euler                Figure 6: Material contour plot after the remap 
 

Notice that in figure 5, the majority of the cells in the Euler grid are empty. The dynamic memory-management 
scheme implemented in AUTODYN-3D greatly reduces memory requirements in this situation, allowing the 
calculation to be carried out on a PC with only 64 Mb of memory 

 
Figure 8 shows the Euler grid at two different times during the penetration calculation. Figure 9 shows material 

contour plots at the same two times.  
 

        
 

Figure 8: The Euler grid at two different times during the penetration calculation 
 

        
 

Figure 9: Material contour plots at two different times during the penetration calculation 



 

 
4.  Conclusions 

 
This paper has described and illustrated some novel Eulerian techniques implemented in the three-dimensional code 
AUTODYN-3D. They include a second order Godunov processor with a high-resolution multi-material interface 
tracking algorithm and efficient dynamic memory-management scheme, and a Lagrange to Euler remap capability. An 
example has demonstrated how, together, these new features can alleviate traditional drawbacks associated with 
Eulerian techniques. In particular, dynamic memory management permits virtual Eulerian grids to be set up that 
require much less memory than conventional Euler grids, and the remap capability allows the combined advantages of 

Lagrange and Euler techniques to be brought to bear in solving complex interaction problems .  
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